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Abstract

Trimethyl- or dimethylphenylsilylepoxides react with lithium phenylsulfide to give regio- and stereodefined
vinyl sulfides resulting from�-ring opening and Peterson elimination. When the epoxide bears the bulkytert-
butyldiphenylsilyl group the reaction is more puzzling. Depending on the�-substitution and the presence of alu-
minium chloride, we obtained silyl enol ethers,�-silylaldehydes or�-hydroxy-�-phenylthiosilanes, all resulting
from �-opening. © 2000 Elsevier Science Ltd. All rights reserved.

The considerable importance of regio- and stereospecificity to organic synthesis makes the continued
search for such methodology a high priority challenge.�,�-Epoxysilanes are interesting synthons
because they can serve as versatileZ or E vinyl cation equivalents. They undergo regio- and stereospecific
�-opening by a variety of nucleophiles to give diastereomerically pure�-hydroxysilanes,1,2 which
experiencesyn or anti �-elimination3 providing a convenient route to a number of heterosubstituted
olefins of known stereochemistry.4

We have recently reported5 that dimethylphenyl- andtert-butyldiphenylsilylepoxides react with lith-
ium diphenylphosphide and then with methyl iodide giving regio- and stereodefined vinylphosphonium
iodides resulting from�-opening and subsequent Peterson elimination. When the methylation was
omitted vinylphosphines were isolated. Otherwise, when an�-hinderedtert-butyldiphenylsilylepoxide
bore a�-phenyl group we obtained stereospecifically the corresponding silyl enol ether by�-opening
followed by the Brook rearrangement with simultaneousanti-elimination of methyldiphenylphosphine.

We have now found that silylepoxides prepared by epoxidation6,7 of vinylsilanes, obtained, in turn,
by dimethylphenylsilyl-8 andtert-butyldiphenylsilylcupration7 from alkynes, react with lithium phenyl-
sulfide in THF9 to give different products depending on the nature of the silyl group and also of the
substitution pattern of the epoxides (Scheme 1). All new compounds showed satisfactory spectroscopic
and analytical data.10

Trimethyl- or dimethylphenylsilylepoxides1a–d and1g react under mild conditions (�78°C!0°C,
when R=H;�78°C!rt, when R=Bu, Ph), and in short time reactions (1–4 h), providing regio- and
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Scheme 1.

stereodefined11 vinyl thioethers2a–c and2f, in one step12 and with good-to-excellent yields.�,�-Bis-
silylepoxides1e and1f are shown to be less reactive. In order to obtain good yields of interesting�-
silylvinyl thioethers2d and2e, it was necessary to heat the reaction mixture in THF at reflux for longer
reaction times (15–20 h). Fortunately, under these conditions theE geometry of2d and2e is retained.

The regio- and stereochemical outcome is consistent with an�-opening with inversion of configuration
followed by asyn�-elimination process (Scheme 2).

Scheme 2.

On the other hand, the bulkytert-butyldiphenylsilyl group changes the regioselectivity and intro-
duces useful differences in the chemistry of the silylepoxides. The behaviour and reactivity oftert-
butyldiphenylsilylepoxides1h–k toward lithium phenylsulfide depends on the�-substitution type. Thus,
the �-unsubstituted silylepoxide1h is predominantly attacked by sulfide at the�-position.13 In its
reaction with lithium phenylsulfide it affords a 1:2 mixture of the vinyl thioether2a, resulting from
�-attack (Scheme 2) and the silyl enol ether3. The latter is presumably formed by�-opening followed
by Brook rearrangement of the intermediate6 with anti-elimination of the� leaving group (phenylthio)14

(Scheme 3, path a). Although the silyl enol ether3 has no stereochemistry, ananti stereochemistry
was first demonstrated by Hudrlik et al.15 for this elimination. Moreover, the same mechanism and
stereochemistry has been proposed by us5 to explain the formation of theZ silyl enol ether resulting
from �-opening oftrans1-tert-butyldiphenylsilyl-2-phenyloxirane with lithium diphenylphosphide.

Likewise, the formation of�-silylaldehyde4 resulting from�-phenylsilylepoxide1i may be logically
explained via the same intermediate6 by silicon migration to the�-carbon with concomitant loss of the
�-leaving group16 (Scheme 3, path b).

Both cis andtrans�-butylsilylepoxides1j and1k are recovered untransformed even after prolonged
heating with lithium phenylsulfide in THF at reflux. Nevertheless, when aluminium chloride is added to
the mixture of1k and lithium phenylsulfide, theerythro�-hydroxysilane5, resulting from�-attack on
the backside, is isolated. In this case, ring�-opening would be expected to be governed by the relative
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Scheme 3.

stability of an incipient�-silyl carbocation generated by the initial electrophile coordination. In these
conditions, the intermediate similar to6 (probably an aluminium�-alkoxysilane) does not undergo Brook
rearrangement and affords5 in the final hydrolysis.

In summary, since epoxysilanes have been obtained by epoxidation of vinylsilanes, the overall process
using trimethyl- or dimethylphenylsilyl derivatives provides a general regio- and stereospecific method
for converting vinylsilanes into vinylsulfides with retention of configuration. Other methods for preparing
vinylsulfides, such as addition of thiols17 to alkynes or reactions of carbonyl compounds with sulfur-
modified Wittig or related reagents,18 are not stereospecific. Apart from the known applications of vinyl
thioethers19 we should point out the special utility of sulfur and silicon bifunctionalized olefins2d and2e
in organic synthesis.20 For example, they serve as reagents for thiophenyl-functionalized cyclopentenone
annulations via Nazarov cyclizations.21

On the other hand, all�-opening products obtained starting fromtert-butyldiphenylsilylepoxides
are of great synthetic utility. The silyl enol ether is one of the more versatile functional groups.22

The formation of�-tert-butyldiphenylsilyl aldehyde4 is particularly noteworthy since attempts to
isolate�-trimethylsilyl and�-dimethylphenylsilyl aldehydes were unsuccessful.23 Moreover, they are
useful reagents for the stereoselective synthesis of�-vinylcarbonyl compounds.24 Finally, the synthetic
possibilities of�-sulfur gem-hydroxysilanes as precursors of silyl enol ethers,�-sulfur acylsilanes,�-
silyl sulfones, etc, will be the subject of later research.
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