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Abstract

Trimethyl- or dimethylphenylsilylepoxides react with lithium phenylsulfide to give regio- and stereodefined
vinyl sulfides resulting from -ring opening and Peterson elimination. When the epoxide bears the teutky
butyldiphenylsilyl group the reaction is more puzzling. Depending on tisebstitution and the presence of alu-
minium chloride, we obtained silyl enol ethers;silylaldehydes or -hydroxy- -phenylthiosilanes, all resulting
from -opening. © 2000 Elsevier Science Ltd. All rights reserved.

The considerable importance of regio- and stereospecificity to organic synthesis makes the continued
search for such methodology a high priority challenge.-Epoxysilanes are interesting synthons
because they can serve as versatite E vinyl cation equivalents. They undergo regio- and stereospecific

-opening by a variety of nucleophiles to give diastereomerically putg/droxysilanes;? which
experiencesynor anti -eliminatior? providing a convenient route to a number of heterosubstituted
olefins of known stereochemistty.

We have recently reportédhat dimethylphenyl- antert-butyldiphenylsilylepoxides react with lith-
ium diphenylphosphide and then with methyl iodide giving regio- and stereodefined vinylphosphonium
iodides resulting from -opening and subsequent Peterson elimination. When the methylation was
omitted vinylphosphines were isolated. Otherwise, when drinderedtert-butyldiphenylsilylepoxide
bore a -phenyl group we obtained stereospecifically the corresponding silyl enol ethewopgning
followed by the Brook rearrangement with simultaneauns-elimination of methyldiphenylphosphine.

We have now found that silylepoxides prepared by epoxid&tiari vinylsilanes, obtained, in turn,
by dimethylphenylsilyl® andtert-butyldiphenylsilylcupratioh from alkynes, react with lithium phenyl-
sulfide in THP to give different products depending on the nature of the silyl group and also of the
substitution pattern of the epoxides (Scheme 1). All new compounds showed satisfactory spectroscopic
and analytical dat&?

Trimethyl- or dimethylphenylsilylepoxide$a—d and 1g react under mild conditions (78°C?¥ 0°C,
when R=H; 78°CIrt, when R=Bu, Ph), and in short time reactions (1-4 h), providing regio- and
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Scheme 1.

stereodefineld vinyl thioethers2a— and2f, in one stef? and with good-to-excellent yields., -Bis-
silylepoxidesle and 1f are shown to be less reactive. In order to obtain good yields of interesting
silylvinyl thioethers2d and2e, it was necessary to heat the reaction mixture in THF at reflux for longer
reaction times (15-20 h). Fortunately, under these conditions gemmetry oR2d and2eis retained.

The regio- and stereochemical outcome is consistent with-apening with inversion of configuration
followed by asyn -elimination process (Scheme 2).
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On the other hand, the bulkiert-butyldiphenylsilyl group changes the regioselectivity and intro-
duces useful differences in the chemistry of the silylepoxides. The behaviour and reactitety- of
butyldiphenylsilylepoxidedh—k toward lithium phenylsulfide depends on thesubstitution type. Thus,
the -unsubstituted silylepoxiddh is predominantly attacked by sulfide at theposition® In its
reaction with lithium phenylsulfide it affords a 1:2 mixture of the vinyl thioetBey resulting from

-attack (Scheme 2) and the silyl enol etBeiThe latter is presumably formed byopening followed
by Brook rearrangement of the intermedi@teith anti-elimination of the leaving group (phenylthid}
(Scheme 3, path a). Although the silyl enol etl¥has no stereochemistry, amti stereochemistry
was first demonstrated by Hudrlik et *&l.for this elimination. Moreover, the same mechanism and
stereochemistry has been proposed by tosexplain the formation of th& silyl enol ether resulting
from -opening oftrans 1-tert-butyldiphenylsilyl-2-phenyloxirane with lithium diphenylphosphide.

Likewise, the formation of -silylaldehyde4 resulting from -phenylsilylepoxideli may be logically
explained via the same intermedi&éy silicon migration to the -carbon with concomitant loss of the

-leaving group® (Scheme 3, path b).

Both cis andtrans -butylsilylepoxideslj and1k are recovered untransformed even after prolonged
heating with lithium phenylsulfide in THF at reflux. Nevertheless, when aluminium chloride is added to
the mixture oflk and lithium phenylsulfide, therythro -hydroxysilaneb, resulting from -attack on
the backside, is isolated. In this case, ringpening would be expected to be governed by the relative
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stability of an incipient -silyl carbocation generated by the initial electrophile coordination. In these
conditions, the intermediate similarégprobably an aluminium -alkoxysilane) does not undergo Brook
rearrangement and affor8sn the final hydrolysis.

In summary, since epoxysilanes have been obtained by epoxidation of vinylsilanes, the overall process
using trimethyl- or dimethylphenylsilyl derivatives provides a general regio- and stereospecific method
for converting vinylsilanes into vinylsulfides with retention of configuration. Other methods for preparing
vinylsulfides, such as addition of thidlsto alkynes or reactions of carbonyl compounds with sulfur-
modified Wittig or related reagent8 are not stereospecific. Apart from the known applications of vinyl
thioether$® we should point out the special utility of sulfur and silicon bifunctionalized olefthand2e
in organic synthesi&’ For example, they serve as reagents for thiophenyl-functionalized cyclopentenone
annulations via Nazarov cyclizatioR5.

On the other hand, all -opening products obtained starting fraert-butyldiphenylsilylepoxides
are of great synthetic utility. The silyl enol ether is one of the more versatile functional gfups.
The formation of -tert-butyldiphenylsilyl aldehyde4 is particularly noteworthy since attempts to
isolate -trimethylsilyl and -dimethylphenylsilyl aldehydes were unsucces$fulloreover, they are
useful reagents for the stereoselective synthesis-ahylcarbonyl compound®* Finally, the synthetic
possibilities of -sulfur gemhydroxysilanes as precursors of silyl enol ethersulfur acylsilanes, -
silyl sulfones, etc, will be the subject of later research.
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resulting solution was allowed to warm up to 0°C fia and 1b, to room temperature fatc, 1d, 1g and1i, or heated at
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59), 239 (BuPhsSi*, 100). Compoundb: IR (film)/cm * 3450 br (OH), 1100 (SiPh)H NMR (CDCl;) 7.82-7.35 (m,
15H, PhSi, PhS), 4.28 (d, 1H, J=3.8 HDH), 3.72 (m, 1H, CHS), 1.67 (s br, 1H, OH), 1.35 (m, 4H, £8H,), 1.16 (s,
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